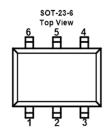


2A,4.5V-18V Input,500kHz Synchronous Step-Down Converter

■ INTRODUCTION:

The HG1104 is a constant frequency, current mode step-down converter. The device integrates a main switch and a synchronous rectifier for high efficiency without an external Schottky diode. It is ideal for powering portable equipment that runs from a single cell Lithium-Ion (Li+) battery. The output voltage can be regulated as low as 0.6V. The HG1104 can also run at 100% duty cycle for low dropout operation, extending battery life in portable system. This device offers two operation modes, PWM control and PFM Mode switching control, which allows a high efficiency over the wider range of the load.

The HG1104 is offered in a low profile 5-pin, SOT package, and is available in an adjustable version.


■ FEATURES:

- High efficiency: Up to 96%
- 500kHz Constant Frequency Operation
- 2A Output Current
- No Schottky Diode Required
- 4.5V to 18V Input Voltage Range
- Output Voltage as Low as 0.6V
- Slope Compensated Current Mode Control for Excellent Line and Load Transient Response
- Integrated internal compensation
- Stable with Low ESR Ceramic Output Capacitors
- Over Current Protection with Hiccup-Mode
- Thermal Fault Protection
- Inrush Current Limit and Soft Start
- SOT23-6 package
- -40° C to +85° C Temperature Range

■ APPLICATIONS:

- Distributed Power Systems
- Digital Set Top Boxes
- Flat Panel Television and Monitors
- Wireless and DSL Modems
- Notebook Computer

■ PIN CONFIGURATION:

■ ORDER INFORMATIO

HG1104①②

DESIGNATOR	SYMBOL	DESCRIPTION		
0	Α	Standard		
2	Е	Package: SOT23-6		

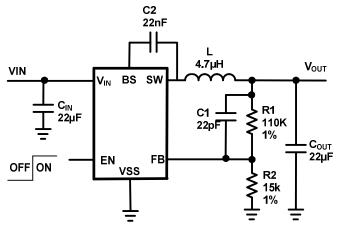
Tabel1. Pin Description

PIN NUMBER	PIN NAME	FUNCTION		
E	PIN NAIVIE	FUNCTION		
1	BS	Boostrap. A capacotpr connected between SW and BS pins is required to form a floating supply across the high-side switch driver.		
2	Vss	Analog ground pin.		
3	FB	Adjustable version feedback input. Connect FB to the center point of the external resistor divider.		
4	EN	Drive this pin to a logic-high to enable the IC Drive to a logic-low to disable the IC and enter micropower shutdown mode.		
5	VIN	Power supply Pin		
6	SW	Switching Pin		

■ ABSOLUTE MAXIMUM RATINGS(Note1)

PARAME	TER	SYMBOL	RATINGS	UNITS
Input Volt	age	V_{IN}	V _{SS} -0.3~V _{SS} +20	V
EN Voltag	ges	V_{EN}	V _{SS} -0.3~V _{SS} +20	V
FB Volta	ge		V _{SS} -0.3~ V _{SS} +6	V
SW Volta	age		V _{SS} -0.3~V _{IN} +0.5	V
BS Volta	ige		V _{SW} -0.3~V _{SW} +5	V
Power Dissipation	SOT23-6	P_D	400	mW
Thermal Res	istance			
Operating Tem	perature	T_{opr}	-40~+85	$^{\circ}\!\mathbb{C}$
Junction Temp	perature	Tj	150	$^{\circ}\!\mathbb{C}$
Storage Temp	erature	T_{stg}	-40~+125	$^{\circ}\!\mathbb{C}$
Soldering Temperature & Time		T _{solder}	260℃, 10s	
ESD HBM(Human	Body Mode)	-	2	kV
ESD MM(Machi	ine Mode)	-	200	V

■ ELECTRICAL CHARACTERISTICS


HG1104 Series $(V_{IN}=V_{EN}=3.6V, V_{OUT}=1.8V, T_A=25^{\circ}C, unless otherwise noted.)$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage		4.5		18	V
Supply Current in Operation	V _{EN} =2.0V, V _{FB} =1.1V		0.4	0.6	mA
Supply Current in Shutdown	V _{EN} =0 or EN = GND		1		μA
Regulated Feedback Voltage	T _A = 25℃	0.588	0.600	0.612	V
VFB	4.5V				
High-Side Switch On-			90		mΩ
Resistance					
Low-Side Switch On-			70		mΩ
Resistance					
High-Side Switch Leakage	V _{EN} =0V, V _{SW} =0V		0	10	μA
Current					
Upper Switch Current Limit	Minimum Duty Cycle		2.6		Α
Oscillation Frequency			0.5		MHZ
Maximum Duty Cycle	V _{FB} =0.6V		92		%
Minimum On-Time			60		ns
Soft-start Time	T _{SS}		4		ms
Thermal Shutdown			160		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

- Note 2: T_J is calculated from the ambient temperature TA and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) x (170 °C/W)$.
- Note 3: 100% production test at +25°C. Specifications over the temperature range are guaranteed by design and characterization.

■ TYPICAL APPLICATION CIRCUITS

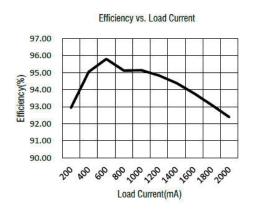
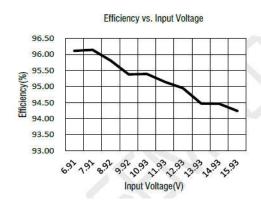
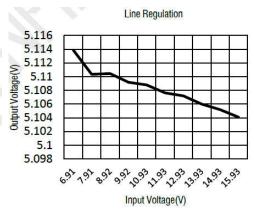
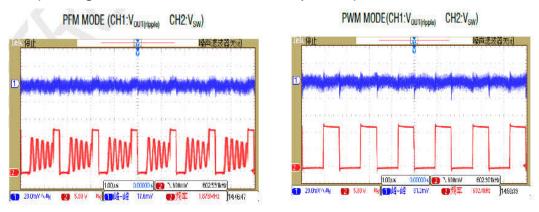


Figure 1 Basic Application Circuit


Note:
$$V_{OUT} = V_{FB} \times \left(1 + \frac{R1}{R2}\right)$$


■ TYPICAL PERFORMANCE CHARACTERISTICS

(Test Figure1 above, unless otherwise specified)



■ TYPICAL PERFORMANCE CHARACTERISTICS

(Test Figure1 above, unless otherwise specified)

■ FUNCTIONAL BLOCK DIAGRAM

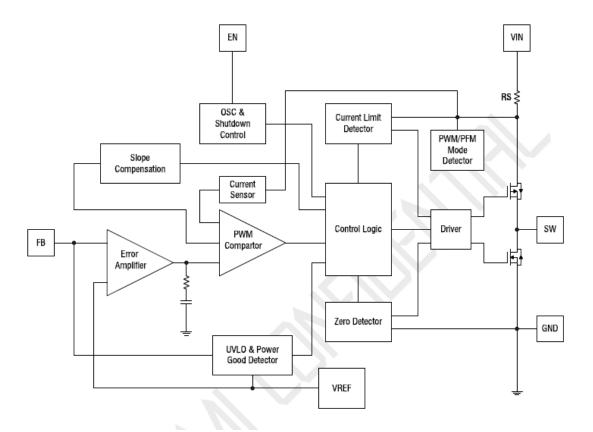
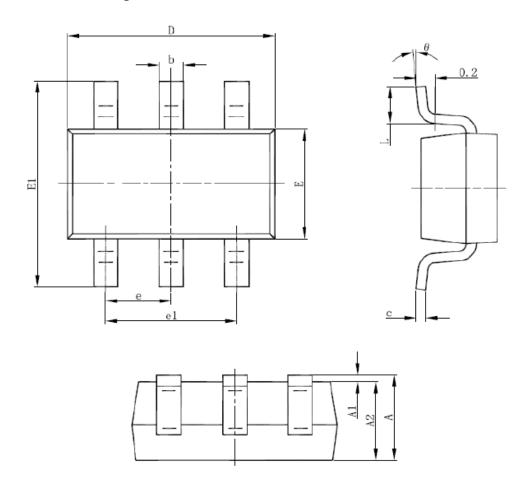



Figure 2 Block Diagram

■ PACKAGING INFORMATION

SOT23-6 Package Outline Dimensions

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	