HG1306 Series

Low Current Consumption 300mA CMOS Voltage Regulator

INTRODUCTION

深圳海格微电子

ShenZhen HaiGe Microelectronics

The HG1306 series are a group of positive voltage regulators manufactured by CMOS technologies with low power consumption and low dropout voltage, which provide large output currents even when the difference of the input-output voltage is small. The HG1306 series consume less than 0.1uA in shutdown mode, which can prolong battery life in portable electronics. The series are very suitable for the battery-powered equipments, such as RF applications and other systems requiring a quiet voltage source.

FEATURES

- Low Quiescent Current: 2µA
- Operating Voltage: 2.0V~10V
- Output Current: 300mA
- Low Dropout Voltage: 150mV@100mA
- Excellent Line and Load Transient Response
- Output Voltage: 1.5~ 5.0V
- High Accuracy: ±2% (Typ.)
- Built-in Current Limiter, Short-Circuit
 Protection
- TTL- Logic-Controlled Shutdown Input
- Tantalum Capacitor compatible

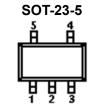

APPLICATIONS

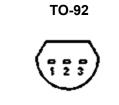
- Portable consumer equipments
- Laptop, Palmtops and PDA
- Digital Still and Video Cameras

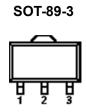
■ BLOCK DIAGRAM

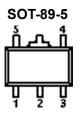
- MP3, MP4 Player
- Radio control systems
- Battery-Powered Equipment

ORDER INFORMATION




HG1306(1)2)3(4)


DESIGNATOR	SYMBOL	DESCRIPTION	
	Α	Standard	
Ū	В	With Shutdown Function	
23	Integer	Output Voltage e.g.1.8V=②:1, ③:8	
	M/MA/MC/MY	Package:SOT-23-3/5	
4	P/PT	Package:SOT-89-3/5	
	Т	Package:TO-92	


■ PIN CONFIGURATION

PIN NUMBER								
	SOT	-23-3		SOT	-89-3	TO-92	PIN NAME	FUNCTION
М	MA	MC	MY	Р	PT	Т		
1	2	3	3	1	2	1	V _{SS}	Ground
2	1	2	1	3	1	3	V _{OUT}	Output
3	3	1	2	2	3	2	V _{IN}	Power input

SOT-23-5

PIN NUMBER	SYMBOL	FUNCTION
1	V _{IN}	Power Input Pin
2	V _{SS}	Ground
3	CE	Chip Enable Pin
4	NC	No Connection
5	V _{OUT}	Output Pin

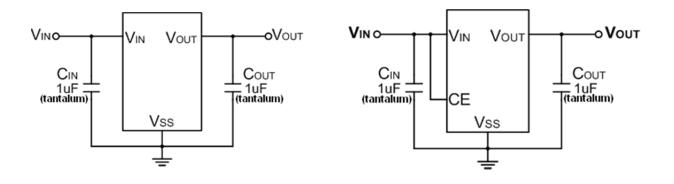
SOT-89-5

PIN NUMBER	SYMBOL	FUNCTION		
1	V _{OUT}	Output Pin		
2	V _{SS}	Ground		
3	NC	No Connection		
4	CE	Chip Enable Pin		
5	V _{IN}	Power Input Pin		

ABSOLUTE MAXIMUM RATINGS

(Unless otherwise specified, 1				
PARAMETER	R	SYMBOL	RATINGS	UNITS
Input Voltage	;	V _{IN}	V _{SS} -0.3~V _{SS} +12	V
Output Currer	nt	I _{OUT}	600	mA
Output Voltag	е	V _{OUT}	V _{SS} -0.3~V _{IN} +0.3	V
	SOT-23	Pd	400	mW
Power Dissipation	SOT-89	Pd	600	mW
	TO-92	Pd	500	mW
Operating Temperature		T _{opr}	-40~+85	°C
Storage Temperature		T _{stg}	-40~+125	°C
Soldering Temperatur	Soldering Temperature & Time		260 ℃, 10 s	

ELECTRICAL CHARACTERISTICS


HG1306 Series	(V _{IN} =V _{OUT} +1V, C _{IN} =C _{OUT} =1µF, Ta=25℃,unless otherwise specified)						
PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Output Voltage	V _{OUT} (E) (Note 2)	I _{OUT} =40mA	V _{ОUT} *0.98	V _{OUT}	V _{OUT} *1.02	V	
Supply Current	I _{SS}	I _{OUT} =0		2	3	μA	
Standby Current	I _{STBY}	$CE = V_{SS}$			0.2	μA	
Output Current	I _{OUT}	_	300			mA	
Dropout Voltage (Note 3)	V _{dif}	I _{OUT} =100mA V _{OUT} ≥3.0V		150		mV	
Load Regulation	<u>Δ</u> V _{OUT}	V _{IN} = V _{OUT} +1V, 1mA≤I _{OUT} ≤100mA		10		mV	
Line Regulation	$\frac{\Delta V_{OUT}}{V_{OUT} \times \Delta V_{IN}}$	I _{OUT} =10mA V _{OUT} +1V≤V _{IN} ≤6V		0.01	0.3	%/V	
Output Voltage Temperature Characteristics	$\frac{\Delta V_{OUT}}{\Delta T \times V_{OUT}}$	I _{OUT} =10mA -40≤T≤+85		100		ppm	
Short Current	I _{Short}	V _{OUT} =V _{SS}		50		mA	
Input Voltage	V _{IN}	—	2.0		10	V	
CE "High" Voltage	V _{CE} "H"		1.5		V _{IN}	V	
CE "Low" Voltage	V _{CE} "L"				0.3	V	

NOTE:

1. V_{OUT} : Specified Output Voltage.

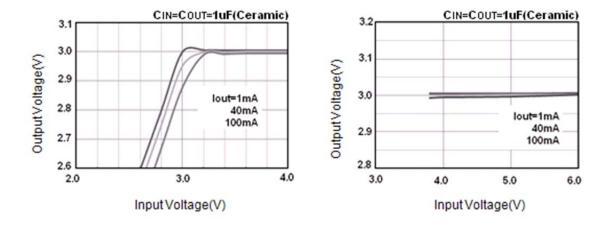
- 2. V_{OUT} (E) : Effective Output Voltage (Ie. The Output Voltage When V_{IN} = (V_{OUT} +1.0V) And Maintain A Certain I_{OUT} Value).
- V_{dif}: The Difference Of Output Voltage And Input Voltage When Input Voltage Is Decreased Gradually Till Output Voltage Equals To 98% Of V_{OUT} (E).

TYPICAL APPLICATION

APPLICATION INFORMATION

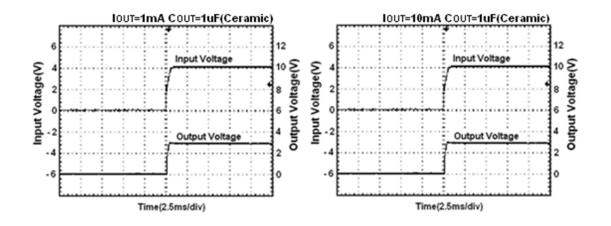
Selection of Input/ Output Capacitors

In general, all the capacitors need to be low leakage. Any leakage the capacitors have will reduce efficiency, increase the quiescent current.

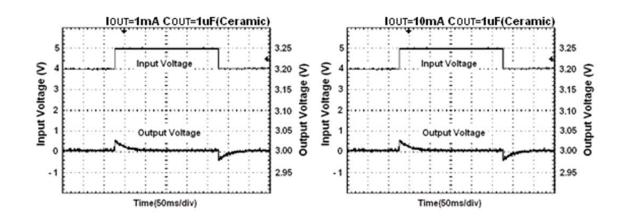

A recent trend in the design of portable devices has been to use ceramic capacitors to filter DC/DC converter inputs. Ceramic capacitors are often chosen because of their small size, low equivalent series resistance (ESR) and high RMS current capability. Also, recently, designers have been looking to ceramic capacitors due to shortages of tantalum capacitors.

Unfortunately, using ceramic capacitors for input filtering can cause problems. Applying a voltage step to a ceramic capacitor causes a large current surge that stores energy in the inductances of the power leads. A large voltage spike is created when the stored energy is transferred from these inductances into the ceramic capacitor. These voltage spikes can easily be twice the amplitude of the input voltage step. (See "Ceramic Input Capacitors Can Cause Overvoltage Transients"——Linear Technology application note 88, March 2001)

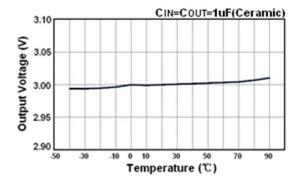
Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors (MLCC). Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the LDO input to a live power source. Adding a 3Ω resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients.

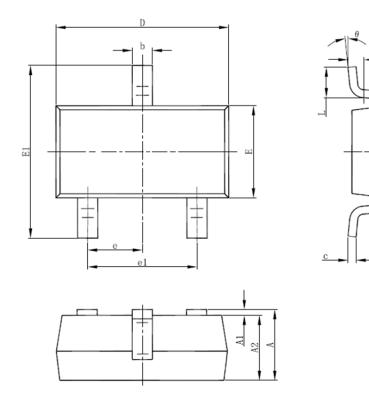

The LDO also requires an output capacitor for loop stability. Connect a 1μ F tantalum capacitor from OUT to GND close to the pins. For improved transient response, this output capacitor may be ceramic.

TYPICAL PERFORMANCE CHARACTERISTICS

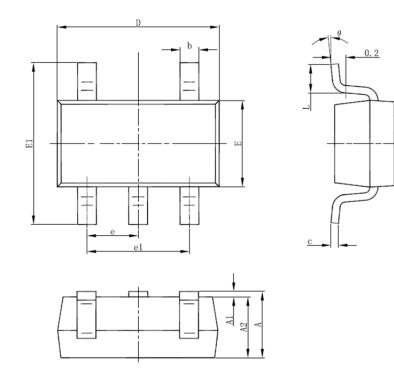


(1) Output Voltage vs. Input Voltage

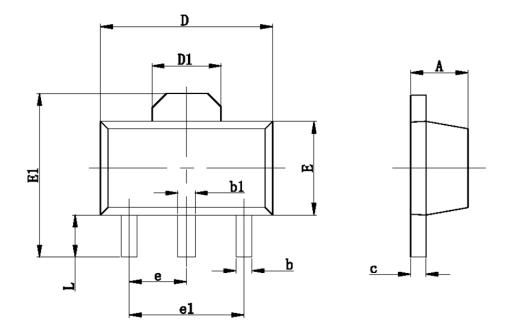

(2) Input Transient Response 1


(4) Output Voltage vs. Temperature

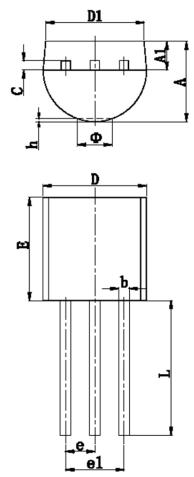
0.2


■ PACKAGING INFORMATION

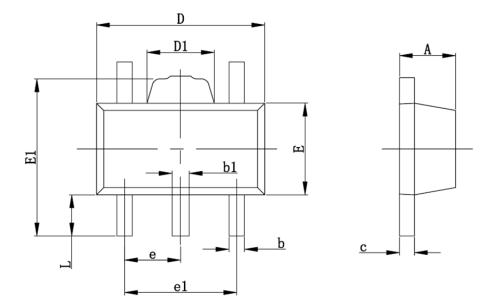
• SOT-23-3 PACKAGE OUTLINE DIMENSIONS


Sumb a l	Dimensions In	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
С	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
е	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

• SOT-23-5 PACKAGE OUTLINE DIMENSIONS


Symbol	Dimensions In	Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
с	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(1	BSC)	0.037(BSC)
e1	1.800	2.000	0.071	0.079
Ĺ	0.300	0.600	0.012	0.024
θ	0°	8°	0°	8°

• SOT-89-3 PACKAGE OUTLINE DIMENSIONS


Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.197	
b1	0.400	0.580	0.016	0.023	
с	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.550) REF	0.061 REF		
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500 TYP		0.060TYP		
e1	3.000) TYP	0.118	BTYP	
L	0.900	1.200	0.035	0.047	

• TO-92 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Мах	
A	3.300	3.700	0.130	0.146	
A1	1.100	1.400	0.043	0.055	
b	0.380	0.550	0.015	0.022	
С	0.360	0.510	0.014	0.020	
D	4.400	4.700	0.173	0.185	
D1	3.430		0.135		
E	4.300	4.700	0.169	0.185	
e	1.270 TYP		0.050) TYP	
e1	2.440	2.640	0.096	0.104	
L	14.100	14.500	0.555	0.571	
Φ		1.600		0.063	
h	0.000	0.380	0.000	0.015	

• SOT-89-5 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Мах	
A	1.400	1.600	0.055	0.063	
b	0.320	0.520	0.013	0.020	
b1	0.360	0.560	0.014	0.022	
С	0.350	0.440	0.014	0.017	
D	4.400	4.600	0.173	0.181	
D1	1.400	1.800	0.055	0.071	
E	2.300	2.600	0.091	0.102	
E1	3.940	4.250	0.155	0.167	
е	1.500	OTYP	0.060TYP		
e1	2.900	3.100	0.114	0.122	
L	0.900	1.100	0.035	0.043	